Multidimensional Simulations of Core Collapse Supernovae

NCCS USERS MEETING

Anthony Mezzacappa, ORNL March 27, 2007

Core Collapse Supernovae

What are they?

⇒ Explosions of massive stars.

How often do they occur?

⇒ About twice per century in our galaxy.

Why are they important?

⇒ Dominant source of elements in the Universe.

Cas A
Supernova
Remnant
(Chandra Observatory)

Core Collapse Supernova Paradigm

How is the supernova shock wave revived?

Most fundamental question in supernova theory.

- Gravity
- Neutrino Heating
- Convection
- Shock Instability
- Nuclear Burning
- Rotation
- Magnetic Fields

New Ingredient

Project Overview

(CHIMERA) Project Participants

- Stephen Bruenn (Florida Atlantic University)
- John Blondin (North Carolina State University)
- W. Raphael Hix (ORNL)
- Bronson Messer (ORNL)
- Part of larger PRISM project.
 - CHIMERA ("Ray-by-Ray" Multifrequency Neutrino Transport)
 - V3D (3D Multifrequency Neutrino Transport)
 - GenASiS (3D Multiangle, Multifrequency Neutrino Transport)

Project Overview

 Perform 3D multiphysics simulations of core collapse supernovae with multifrequency (multiangle, multifrequency) neutrino transport.

Project Milestones

- FY07: "Late-time" simulations in 2D.
- FY07/08: First simulations in 3D with multifrequency neutrino transport.

NC STATE UNIVERSITY

Blondin

Cardall
Hix
Messer
Mezzacappa

Fuller Hayes

Bruenn Marronetti

Myra Swesty

1D Revisited

Simulation Building Blocks

- ⇒ MGFLD Neutrino Transport
- ⇒ PPM Hydrodynamics
- ⇒ GR
- ⇒ Lattimer-Swesty EOS
- ⇒ Alpha Network

Resolution

Spatial: 256 Energy: 20

Findings

- Explosions in 1D.
- Shock is not revived in the iron core.
 - Explosions initiated when shock reaches oxygen layer.
- Time to explosion dictated by efficiency of neutrino heating.

Bruenn et al. (2007)

Ongoing 2D Multi-Physics Supernova Models

☐ Simulation Building Blocks

- "RbR-Plus" MGFLD Neutrino Transport
- 2D PPM Hydrodynamics
- Lattimer-Swesty EOS
- Nuclear (Alpha) Network
- 2D Newtonian Gravity with Spherical GR Corrections
- Neutrino Emissivities/Opacities
 - "Standard" + Elastic Scattering on Nucleons
 - + Nucleon-Nucleon Bremsstrahlung
- **★** Run for postbounce times > 500 ms.
- * Run on a 180 degree grid.

"Ray-by-Ray" Approximation

- Radial transport allowed.
- Lateral transport suppressed.

Distinguish our 2D runs from runs performed by other groups.

Stellar Mass	Gravity	Opacities	Resolution 20 Groups	t (ms pb)	Explosion	Energy (B)
11	N	Standard	192 X 32	610	Y	0.18
11.2	N	Improved	256 X 128	262	Y	0.1
11.2	N	Improved	256 X 256	429	Y	0.36
11.2	GR	Standard	256 X 256	589	Y	0.19
11.2	GR	Improved	256 X 128	319	Y	0.27
11.2	GR	Improved	256 X 256	372	Y	0.30
15	N	Standard	192 X 32	680	Y	0.14
15	□N	Improved	256 X 256	269		
15	GR	Improved	256 X 256	180		
20	N	Improved	256 X 256	379	Possible	
20	GR	Improved	256 X 256	307	Possible	

Compare 1D case.

Bruenn et al., Journ. Phys. Conf. Ser., 46, 393 (2006); Mezzacappa et al., Cefalu' 2006, in press

Project Impact

What can be solved from the results?

- Late time 1D/2D simulations have altered the shock revival paradigm.
- The trends are promising.
 - Explosions in 1D for lighter progenitors.
 - Faster, more energetic explosions in 2D, perhaps for larger progenitors.
 - What will 3D bring?

Who cares about this work and its results? Why?

- See Slide 2 for overall motivation.
- Above results demonstrate we are closing in on the core collapse supernova explosion mechanism.

Project Logistics

- What size production jobs will you be running?
 - See next slide.
- Do you have any special requirements (software/libraries/data storage/scientific workflow)?
 - Multi-core—aware libraries for sparse linear system solution.
 - 10 to 100 TB per simulation.
- Do you have any special visualization needs?
 - Rendering of stellar core fluid composition and magnetic fields in 3D.
 - Rendering of 4D neutrino data (3D plus neutrino energy).

3D Simulation Layout

$$N_{\rm cores} = N_{\rm rays} = N_{\theta} \times N_{\phi}$$

Number of	Latitudinal	Longitudinal	
Rays	Zones	Zones	
8,192	64	128	
	(3-Degree Resolution)	(3-Degree Resolution)	
73,728	192	384	
	(1-Degree Resolution)	(1-Degree Resolution)	

Runtime for mCHIMERA: ~11 days per run at 1 ray per core. (~22 days at 2 rays per core, etc.)

Project Logistics (continued)

- What development efforts are required?
 - 3D-grid issues remain and will require continued work.
 - Parallel I/O performance must be explored.
 - Multi-core—aware linear system solution must be explored.
- What issues/problems do you anticipate as you begin production?
 - Achieving reasonable wall-clock throughput for our 3D runs.
 - What can be done to mitigate the impact of an aggressive architecture-augmentation plan on the production of new science?
- What level of interaction do you anticipate with the NCCS staff?
 - Significant (embedded), particularly with members of the NCCS Scientific Computing Group (Messer).

New Science at 119 TF, 250 TF, 1 PF, Sustained PF

Machine	2D Science	3D Science	Motivation	
119 TF		3-Degree Resolution		
		Small Nuclear Network	First 3D Models with Multifrequency <u>Neutrino Transport</u>	
		CHIMERA	Explosion Mechanism	
250 TF	GenASiS	3-Degree Resolution	Element Synthesis	
		Large Nuclear Network		
		CHIMERA		
1 PF		1-Degree Resolution	Higher Resolution and	
		Large Nuclear Network	Large Nuclear Network	
		CHIMERA		
Sustained PF		GenASiS	Definitive Core Collapse Supernova Simulations	

Give Praise, Give Thanks

- Doug Kothe: NCCS Leadership
- Ricky Kendall: SCG Leadership
- Bronson Messer: Perfect Example of a Perfect Model
- Sean Ahern, Ross Toedte: Visualization Support
- Buddy Bland: LCF Leadership
- Julia White: NCCS/LCF Public Face

These folks will listen! In this regard, you will find no better place to compute.

